1 (Sem-1) MAT

## 2024

## **MATHEMATICS**

Paper: MAT0100104

(Classical Algebra)

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions.

Answer either in English or in Assamese.

- Answer the following questions : 1×8=8
  তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ
  - (a) Which of the following statements is false for the complex number –i?
    জটিল সংখ্যা –iৰ বাবে তলৰ কোনটো উক্তি অশুদ্ধ?
    - $-\frac{\pi}{2}$  is the principal argument  $-\frac{\pi}{2}$  হৈছে প্ৰধান প্ৰসাৰণ

Contd.



(ii)  $\frac{3\pi}{2}$  is an argument, but not the principal argument

 $\frac{3\pi}{2}$  এটা প্ৰসাৰণ, কিন্তু প্ৰধান প্ৰসাৰণ নহয়

- (iii) Both (i) and (ii) are true
  (i) আৰু (ii) দুয়োটা সত্য
- (iv) (i) is true, but (ii) is false (i) সঁচা, কিন্তু (ii) মিছা
- (b) Is it true that (cosnθ-isinnθ) is the only value of (cosθ-isinθ)<sup>n</sup> when n is a fraction and θ is a real number? n এটা ভগ্নাংশ আৰু θ এটা বাস্তৱ সংখ্যা হ'লে (cosnθ-isinnθ) হৈছে (cosθ-isinθ)<sup>n</sup> ৰ একমাত্র মান। উক্তিটো সঁচা নেকি?
- (c) For any complex number z,  $sin h^2 z cos h^2 z =$ \_\_\_\_\_\_.

  যিকোনো জটিল সংখ্যা zৰ বাবে  $sin h^2 z cos h^2 z =$ \_\_\_\_\_\_\_।

1 (Sem-1) MAT/G

- (d) The equation  $x^4 + 5x^2 + 2x 8 = 0$  has  $x^4 + 5x^2 + 2x 8 = 0$  সমীকৰণটোৰ আছে
  - (i) four real roots চাৰিটা বাস্তৱ মূল
  - (ii) four complex roots চাৰিটা জটিল মূল
  - (iii) two real roots and two complex roots

    দুটা বাস্তৱ মূল আৰু দুটা জটিল মূল
  - (iv) only one root x = 1

    মাত্র এটা মূল x = 1
  - (e) If a, b and c are roots of  $x^3 + px^2 + qx + r = 0$ , the value of  $a^2 + b^2 + c^2$  is \_\_\_\_\_\_.

    যদি a, b আৰু c,  $x^3 + px^2 + qx + r = 0$ ৰ মূল হয়, তেন্তে  $a^2 + b^2 + c^2$ ৰ মান হ'ব \_\_\_\_\_\_।
  - (f) Which of the following is a correct statement?
    তলৰ কোনটো উক্তি শুদ্ধ?
    - (i) An algebraic equation must have either a positive or a negative real root.

বীজগণিতীয় সমীকৰণ এটাৰ ধনাত্মক বা ঋণাত্মক বাস্তৱ মূল থাকিব লাগিব।

- (ii) An algebraic equation may not have a complex root.
  বীজগণিতীয় সমীকৰণ এটাৰ জটিল মূল নাথাকিবও পাৰে।
- (iii) An algebraic equation of degree 2 must have 2 distinct roots real or complex.
  - 2 ডিগ্ৰীৰ বীজগণিতীয় সমীকৰণ এটাৰ 2টা সুকীয়া মূল বাস্তৱ বা জটিল হ'ব লাগিব।
- (iv) All the above statements are false. ওপৰৰ সকলোবোৰ উক্তি অশুদ্ধ।
- (g) Is the statement "For three non-zero matrices A, B and C, it is possible that AB = AC, but B≠C." True or False?
  "তিনিটা অশ্ন্য মৌলকক্ষ A, B আৰু C ৰ বাবে সম্ভৱ যে AB = AC কিন্তু B≠C" উক্তিটো সঁচা নে মিছা?
- (h) Assume that A is an  $m \times n$  matrix. If one column in A is entirely zero, what is rank (A)?

ধৰা হ'ল A এটা  $m \times n$  মৌলকক্ষ। যদি A ৰ এটা স্তম্ভ সম্পূৰ্ণ শূন্য হয়, তেন্তে জাতি (A) ৰ মান কি?

- 2. Answer **any six** questions : 2×6=12 *যিকোনো ছটা* প্ৰশ্নৰ উত্তৰ দিয়া ঃ
  - (a) Express -1-i in polar form. -1-iক ধ্ৰুৱীয় ৰূপত প্ৰকাশ কৰা।
  - (b) Solve :  $x = 1^{\frac{1}{4}}$ সমাধান কৰা ঃ  $x = 1^{\frac{1}{4}}$
  - (c) Prove that  $(\exp z)^n = \exp(nz)$ , for any complex number z and positive integer n.

    প্ৰমাণ কৰা যে  $(\exp z)^n = \exp(nz)$ , যিকোনো জটিল সংখ্যা z আৰু ধনাত্মক পূৰ্ণসংখ্যা nৰ বাবে।
    - (d) If 1-i is a root of x<sup>4</sup> + x<sup>2</sup> 2x + 6 = 0, find the other roots of it.
       যদি 1-i, x<sup>4</sup> + x<sup>2</sup> 2x + 6 = 0 ৰ এটা মূল হয়, তেন্তে ইয়াৰ আন মূলবোৰ উলিওৱা।

- (e) Show that each value of 2 Log i is a value of  $Log i^2$ , but not conversely.

  দেখুওৱা যে 2 Log iৰ প্ৰতিটো মান  $Log i^2$  ৰ এটা মান, কিন্তু ইয়াৰ বিপৰীতে নহয়।
- (f) Discuss briefly the nature of the roots of the equation  $x^{10} + 1 = 0$  by applying Descartes' rule of signs.

  ডেকার্টৰ চিহ্নৰ নিয়ম প্রয়োগ কৰি  $x^{10} + 1 = 0$  সমীকৰণটোৰ মূলৰ প্রকৃতিৰ বিষয়ে চমুকৈ ব্যাখ্যা কৰা।
- (g) If  $\alpha_1, \alpha_2, ..., \alpha_n$  are the roots of the equation

$$y_n + t_1 y^{n-1} + t_2 y^{n-2} + \dots + t_n = 0, t_n \neq 0,$$

find the value of  $\sum_{i=1}^{n} \frac{1}{\alpha_i^2}$  using a suitable 'transformation of equation' approach.

যদি 
$$\alpha_1,\alpha_2,...,\alpha_n$$
, সমীকৰণ 
$$y_n+t_1y^{n-1}+t_2y^{n-2}+...+t_n=0,\ t_n\neq 0$$
ৰ মূল হয়, তেন্তে এটা উপযুক্ত 'সমীকৰণৰ ৰূপান্তৰ' পদ্ধতি

ব্যৱহাৰ কৰি 
$$\sum_{i=1}^n rac{1}{lpha_i^2}$$
 ৰ মান উলিওৱা।

(h) Find out all the 3 × 3 matrices which are both symmetric and skewsymmetric.

> সকলো 3 × 3 মৌলকক্ষ বিচাৰি উলিওৱা যিবোৰ প্ৰতিসম আৰু তিৰ্যক প্ৰতিসম দুয়োটা হয়।

(i) Show that  $(A^{-1})^T = (A^T)^{-1}$  holds for a non-singular matrix A.

দেখুওৱা যে  $\left(A^{-1}\right)^T = \left(A^T\right)^{-1}$  পৰাবৰ্তনীয়  $(\text{non-singular}) \ \text{মৌলকক্ষ } A = \text{বাবে প্রযোজ্য } )$ 

(j) Define a homogeneous system of linear equation. Is such a system always consistent? Justify your answer very briefly.

> ৰৈখিক সমীকৰণৰ সমজাতীয় প্ৰণালীৰ সংজ্ঞা দিয়া। এনে প্ৰণালী সদায় সামঞ্জস্যপূৰ্ণ (consistent) নেকি? অতি চমুকৈ উত্তৰটোৰ ন্যায্যতা প্ৰতিপন্ন কৰা।

> > Contd.

3. Answer any two of (a), (b), (c) and (d), and either (e) or (f) and either (g) or (h):  $5\times4\approx20$ 

উত্তৰ দিয়া (a), (b), (c) আৰু (d) ৰ *যিকোনো দুটা*, (e) *অথবা* (f) আৰু (g) *অথবা* (h) :

(a) Let  $z_1$  and  $z_2$  be two non-zero complex numbers. If  $\theta_1$  is an argument of  $z_1$  and  $\theta_2$  is an argument of  $z_2$ , show that

 $\theta_1 - \theta_2$  is an argument of  $\frac{z_1}{z_2}$ . Does

$$arg\left(\frac{z_1}{z_2}\right) = arg z_1 - arg z_2$$
 hold in

general? Justify your answer.

ধৰা হ'ল  $z_1$  আৰু  $z_2$  দুটা অশূন্য জটিল সংখ্যা। যদি  $\theta_1$ ,  $z_1$ ৰ এটা প্ৰসাৰ আৰু  $\theta_2$ ,  $z_2$ ৰ এটা প্ৰসাৰ হয়,

তেন্তে 
$$heta_1- heta_2$$
,  $\dfrac{z_1}{z_2}$ ৰ প্ৰসাৰ বুলি দেখুওৱা।

$$arg\left(rac{z_1}{z_2}
ight)=arg\,z_1-arg\,z_2$$
 সদায় প্রযোজ্য হয়  
নেকি? উত্তৰটোৰ ন্যায্যতা দিয়া।

- (b) Find all complex numbers z such that  $exp(z+\vec{z})=3+4i$ .

  সকলো জটিল সংখ্যা z উলিওৱা যাতে  $exp(z+\vec{z})=3+4i$  হয়।
- (c) Let z be a non-zero complex number and n be a positive integer. Show that  $Log z^{\frac{1}{n}} = \frac{1}{n} Log z$  holds. Also, verify it for z=-i and n=2. ধৰা হ'ল z এটা অশূন্য জটিল সংখ্যা আৰু n এটা ধনাত্মক পূৰ্ণসংখ্যা। দেখুওৱা যে  $Log z^{\frac{1}{n}} = \frac{1}{n} Log z$ । লগতে z=-i আৰু n=2ৰ বাবে ইয়াক সত্যাপন কৰা।
  - (d) If z = x + iy, prove that  $| sin hy | \le | sin z | \le coshy$ .

    যদি z = x + iy, তেন্তে প্ৰমাণ কৰা যে  $| sin hy | \le | sin z | \le coshy$ ।

- (e) Prove that the imaginary roots of a polynomial equation with real coefficients occur always in pairs.
  - বাস্তৱ সহগ থকা বহুপদ সমীকৰণৰ কাল্পনিক মূলবোৰ সদায় যোৰকৈ থাকে বুলি প্ৰমাণ কৰা।
- (f) Determine t and solve the equation  $16x^3 24x^2 2tx + 6 = 0$  if the roots are in arithmetic progression.
  - tৰ মান নিৰ্ণয় কৰা আৰু  $16x^3 24x^2 2tx + 6 = 0$ সমীকৰণটো সমাধান কৰা যদি মূলবোৰ সমান্তৰ প্ৰগতিত থাকে।
- (g) Is it possible to find a non-zero matrix A that is upper triangular and  $\lim_{n\to\infty} A^n = 0$ ? Explain your answer appropriately.

অশৃন্য মৌলকক্ষ A এটা বিচাৰি পোৱা সম্ভৱনে যিটো ওপৰৰ ত্ৰিভুজীয় আৰু  $\lim_{n\to\infty}A^n=0$  ? উত্তৰটো উপযুক্তভাৱে ব্যাখ্যা কৰা।

(h) Reduce the following matrix to row echelon form, determine its rank and identify the basic columns.

> নিম্নলিখিত মৌলকক্ষটোক শাৰী ইচেলন আকৃতিলৈ নিয়া, ইয়াৰ জাতি নিৰ্ধাৰণ কৰা আৰু মূল স্তম্ভসমূহ চিনাক্ত কৰা।

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
2 & 4 & 6 & 9 \\
2 & 6 & 7 & 6
\end{pmatrix}$$

4. Answer either (a) or (b) and any one of (c), (d) and (e):  $10 \times 2 = 20$ 

উত্তৰ দিয়া (a) **অথবা** (b) আৰু (c), (d) আৰু (e)ৰ *যিকোনো* এটা ঃ

(a) (i) If n is an integer, prove that
যদি n এটা পূৰ্ণসংখ্যা হয়, প্ৰমাণ কৰা যে

$$(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}$$
 3

(ii) If the product of two roots of the equation 
$$x^4 + ax^3 + bx^2 + cx + d = 0$$
 is unity, show that

$$(c-a)(ad-c)=(1-d)^2(b-d-1).$$

7

যদি 
$$x^4 + ax^3 + bx^2 + cx + d = 0$$
সমীকৰণটোৰ দুটা মূলৰ গুণফল একক হয়, তেন্তে দেখুওৱা যে

$$(c-a)(ad-c) = (1-d)^2(b-d-1)$$

(b) (i) Prove that প্ৰমাণ কৰা যে

$$\sin^4\theta\cos^2\theta = \frac{1}{32}(\cos6\theta - 2\cos4\theta - \cos2\theta + 2)$$

3

(ii) Solve by Euler's method:

অইলাৰৰ পদ্ধতিৰে সমাধান কৰা ঃ

$$x^4 - 2x^2 + 8x - 3 = 0$$

- (c) For an n×n matrix A, prove that the following statements are equivalent :
  n×n মৌলকক্ষ A ৰ বাবে তলত দিয়া বিবৃতিবোৰ সমতুল্য বুলি প্রমাণ কৰা ঃ
  - (i) A<sup>-1</sup> exists A<sup>-1</sup>ৰ অস্তিত্ব আছে
  - (ii) rank (A) = n জাতি (A) = n
  - (iii) Ax = 0 implies that x = 0Ax = 0 ৰ অংথ হ'ল x = 0
- (d) (i) If  $A_1$ ,  $A_2$ ,... $A_k$  are each  $n \times n$  non-singular matrices, prove that the product  $A_1A_2$ ,... $A_k$  is also non-singular and

$$(A_1 A_2,...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}.$$
 5

যদি  $A_1$ ,  $A_2$ ,... $A_k$ ৰ প্ৰতিটো  $n \times n$  পৰাবৰ্তনীয় (non-singular) মৌলকক্ষ হয়, তেন্তে প্ৰমাণ কৰা যে গুণফল  $A_1A_2$ ,... $A_k$  টোও পৰাবৰ্তনীয় (non-singular) আৰু

$$(A_1 A_2,...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}$$

(ii) Determine the reduced row echelon form of the following matrix and express each non-basic column as a combination of basic columns:

নিম্নলিখিত মৌলকক্ষটোৰ হ্ৰাস শাৰীৰ ইচেলন (reduced row echelon) আকৃতি নিৰ্ধাৰণ কৰা আৰু প্ৰতিটো অমৌলিক স্তম্ভক মৌলিক স্তম্ভৰ দ্বাৰা প্ৰকাশ কৰা ঃ

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
2 & 4 & 6 & 9 \\
2 & 6 & 7 & 6
\end{pmatrix}$$

(e) (i) Explain the general solution of the following system : 4
তলত দিয়া প্ৰণালীটোৰ সাধাৰণ সমাধানৰ বিষয়ে
ব্যাখ্যা কৰা ঃ

$$2x_1 + x_2 + x_3 = 0,$$

$$4x_1 + 2x_2 + x_3 = 0,$$

$$6x_1 + 3x_2 + x_3 = 0,$$

$$8x_1 + 5x_2 + x_3 = 0.$$

(ii) Construct a homogeneous system of three equations in four unknowns with appropriate justification that has as its general solution the following:

চাৰিটা অজ্ঞাত যুক্ত তিনিটা সমীকৰণৰ এটা সমজাতীয় প্ৰণালী উপযুক্ত যুক্তিৰ সৈতে বনোৱা যাৰ সাধাৰণ সমাধান হিচাপে থাকিব

$$x_2 \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix} + x_4 \begin{pmatrix} -3\\0\\2\\1 \end{pmatrix}.$$